New Center for Materials Research to Advance Innovation

Dec 4, 2015 | News, News from Northwestern

A Chicago-based consortium led by Northwestern University has been awarded $25 million over five years from the National Institute of Standards and Technology (NIST), an agency of the U.S. Department of Commerce, to establish a new center of excellence for advanced materials research.

The Center for Hierarchical Materials Design (CHiMaD) will focus on developing the next generation of computational tools, databases and experimental techniques to enable the design of novel materials, one of the primary goals of the Obama administration’s Materials Genome Initiative (MGI).

Other members of the CHiMaD consortium include the University of Chicago, the Northwestern-Argonne Institute of Science and Engineering (a partnership between Northwestern and the Department of Energy’s Argonne National Laboratory) and the Computation Institute (a partnership between the University of Chicago and Argonne).

Designing materials employs physical theory, advanced computer models, vast materials properties databases and complex computations to accelerate the design of a new material with specific properties for a particular application — perhaps an extremely tough, light-weight composite for automobile bodies or a biocompatible cell scaffold for medicine. This approach stands in contrast to the traditional trial-and-error method of materials discovery. (Think of Thomas Edison and his dogged quest for the best light bulb filament.)

The new center’s work is expected to encompass both “hard” (inorganic) and “soft” (organic) advanced materials in fields as diverse as self-assembled biomaterials, smart materials for self-assembled circuit designs, organic photovoltaic materials, advanced ceramics and metal alloys.

CHiMaD will focus these techniques on a particularly difficult challenge, the creation of novel “hierarchical materials.” Hierarchical materials exploit distinct structural details at various scales from the atomic on up to achieve special, enhanced properties. An example in nature of a hierarchical material is bone, a composite of mineral and protein at the molecular level assembled into microscopic fibrils that in turn are assembled into hollow fibers and on up to the highly complex material that is “bone.”

The award to the Northwestern-led consortium for the Center for Hierarchical Materials Design is for $5 million per year for five years, subject to available funds. NIST may, at its discretion, extend the award for an additional five years after a performance review. The consortium is contributing another approximately $4.65 million to the center.

New Center for Materials Research to Advance Innovation